
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

1 Daniel Llamocca

Dynamic Partial Reconfiguration

OBJECTIVES
▪ Implement a project that can be dynamically reconfigured using the ZYBO (or ZYBO Z7-10) Board.
▪ Learn the Partial Reconfiguration (PR) TCL-based non-project flow from HDL to bitstream (Vivado 2019.1)

VIVADO PARTIAL RECONFIGURATION - DOCUMENTATION

▪ UG909: Vivado Design Suite User Guide – Partial Reconfiguration.
▪ UG947: Vivado Design Suite Tutorial – Partial Reconfiguration. You can follow this for the Xilinx-provided ug947-vivado-

partial-reconfiguration-tutorial.zip file (this is a Verilog design for the KC705 demonstration board)

TEST PROJECT – 1 RP
▪ LED pattern control: The circuit, written in VHDL, controls the pattern on the leds(3..0) signal.

✓ leds(3..2): It is controlled by a state machine that switches between 10 and 01. The rate of change is controlled by

the my_genpulse circuit that issues an enable pulse of 1 cycle every 0.5 s (1 cycle = 8 ns in ZYBO Board)

✓ leds(1..0): It is controlled by a 2-bit updown counter whose rate of change is controlled by the parameter N (the

my_genpulse circuit issues an enable pulse of 1 cycle every 𝑁 cycles).

▪ RECONFIGURABLE PARTITION (RP): This is the dynamic (or run-time alterable) region. This RP has 2 parameters: N

and ud. By combining these parameters’ values, we can create a large set of variants (known as Reconfigurable Modules

(RM)). count_rp.vhd: Wrapper file where we can modify the RP parameters in order to create different variants (RMs).

▪ We will modify (at run-time) the Reconfigurable Partition by utilizing two variants (the parameter N is set to 125 × 106 2⁄).

✓ ud=1: Up counter ✓ ud=0: Down counter

▪ Two Configurations: Counter up (count_rp has ud=1), Counter down (count_rp has ud=0).

PROCEDURE
▪ This procedure is adapted from the UG947: Vivado Design Suite Tutorial – Partial Reconfiguration. Changes were made to

some .tcl files to allow us to use VHDL files and the Zynq-7000 PSoCs.

▪ Extract the my_dynled.zip file. Notice the file structure:

✓ design_complete.tcl: Master script where the design sources, parameters, and structure are defined. It runs the entire

design, from RTL to bitstreams. The supporting TCL scripts are located in /Tcl.

✓ design.tcl: It is similar to design_complete.tcl, but it only runs synthesis. We will use this file in this tutorial.

✓ /Sources/hdl/top: top.vhd, static.vhd, my_genpulse.vhd: These constitute the static region, i.e., the circuit that

does not consider the Reconfigurable Partition (RP). Note that the RP is left as a black box.
✓ /Sources/hdl/count_up: count_rp.vhd, top_count.vhd, my_genpulse.vhd, my2bit_udcount.vhd: These files

constitute a Reconfigurable Module (where ud is set to ‘1’ in count_rp.vhd), i.e., a variant of the RP.

✓ /Sources/hdl/count_down: count_rp.vhd, top_count.vhd, my_genpulse.vhd, my2bit_udcount.vhd: These files

constitute a Reconfigurable Module (where ud is set to ‘0’ in count_rp.vhd), i.e., a variant of the RP.

✓ /Sources/xdc: top_io.xdc: I/Os and clocking constraints (Period: 8 ns). This file is associated with the ZYBO Board.

 If you have a ZYBO Z7-10 Board, you must use your own top_io.xdc file.

▪ Note: We are using the TCL-based flow (not the Vivado GUI-based flow). So, you have to execute the design.tcl script.

reset

clock

zE

my_genpulse

R18

G15

L16

FSM

leds(3)

leds(2)

Qud

E

leds(1)

leds(0)z

N ud

N=125x106/2

my_genpulse

E

z

top

count_rp

E

E

M15

M14

D18

G14

RECONFIGURABLE PARTITION

my2bit_udcountclk125

sw(0)

btn(0)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

2 Daniel Llamocca

SYNTHESIS

▪ Open the Vivado TCL Shell (Program → Vivado 2019 TCL Shell). Navigate to the /my_dynled directory.

▪ Run the design.tcl script by entering: source design.tcl –notrace. This will Synthesize the design and create output

files in the /Synth folder. The ‘top’ design will be created with a blank circuit for the Reconfigurable Partition.

ASSEMBLE THE DESIGN
▪ Open the Vivado IDE (start_gui). Go to the TCL console. You can now see the design structure in the Netlist pane.

▪ Load the design: open_checkpoint Synth/Static/top_synth.dcp

You can see the design structure in the Netlist pane, but a black box exists for the count_rp partition. The instantiation

name in the VHDL code is ga.

▪ Load the synthesized checkpoints for first Reconfigurable Module (RM) for each Reconfigurable Partition (RP). In our case,
we will use the count_up as our first RM. We only have one RP (instantiation name: ga)
read_checkpoint -cell ga Synth/count_up/count_rp_synth.dcp

Note that the count_rp module has been filled in with logical resources.

▪ Define each RP as partially reconfigurable:
set_property HD.RECONFIGURABLE 1 [get_cells ga]

▪ Save the assembled design state for this initial configuration (where RP is count_rp with ud=1, i.e., count_up):
write_checkpoint ./Checkpoint/top_link_up.dcp

BUILD THE DESIGN FLOORPLAN
▪ Here, you create a floorplan to define the regions that will be partially reconfigured.

✓ Select the ga instance in the Netlist pane. Right click and select Floorplanning → Draw Pblock. Draw a rectangular box

that fits the resources occupied by the largest RM in that particular RP (instance name ga). The Statistics Tab of the

Pblock Properties pane shows an estimate of the required resources for your module and the available ones in the box
that you just drew. This is useful to optimize the resource count of your RPs.

✓ Run PR Design Rule Checks by selecting Report → Report DRC. Be careful of the warnings, for example:

HDPR-26 (left/right edge improper termination): The Pblock needs to be moved to a different area.

HDPR-8 (no resets in the PR): Software controllable reset missing. This is not a problem in this visual example.

✓ Save these Pblock definitions (RP size and location) and its associated properties on a .xdc file:
write_xdc ./Sources/xdc/fplan.xdc

▪ If the Pblock definitions are already available (e.g., you had run this before), you can just read in that .xdc file. In this

project, the file pblocks.xdc already includes the Pblock definitions: read_xdc ./Sources/xdc/pblocks.xdc

IMPLEMENT THE FIRST CONFIGURATION (RP: counter up)
▪ Load the top-level constraint file (to set device pinouts and top-level constraints):

read_xdc Sources/xdc/top_io.xdc

▪ Optimize, place, and route the design. Notice the Partition Pins (interface points between static and dynamic regions)
opt_design

place_design

route_design

▪ Save the full design checkpoint and create report files:
write_checkpoint -force Implement/Config_count_up/top_route_design.dcp

report_utilization -file Implement/Config_count_up/top_utilization.rpt

report_timing_summary -file Implement/Config_count_up/top_timing_summary.rpt

At this point, you can use the static portion of this configuration for all subsequent configurations (variants of the circuit with
different RMs for each RP). We need to isolate the static design by removing the Reconfigurable Modules:
▪ Clear out Reconfigurable Module logic:

update_design -cell ga -black_box

▪ Lock down all placement and routing. This is an important step to guarantee consistency for different RMs for each RP.
lock_design -level routing

▪ Write out the remaining static-only checkpoint (this checkpoint will be used for any future configurations).
write_checkpoint -force Checkpoint/static_route_design.dcp

IMPLEMENT THE SECOND CONFIGURATION (RP: counter down)
▪ With the locked static design open, read in the post-synthesis checkpoint for the other Reconfigurable Module:

read_checkpoint -cell ga Synth/count_down/count_rp_synth.dcp

▪ Optimize, place, and route the new RM.
opt_design

place_design

route_design

▪ Save the full design checkpoint and report files:
write_checkpoint -force Implement/Config_count_down/top_route_design.dcp

report_utilization -file Implement/Config_count_down/top_utilization.rpt

report_timing_summary -file Implement/Config_count_down/top_timing_summary.rpt

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

3 Daniel Llamocca

▪ At this point, you have implemented the static design and all Reconfigurable Module variants. This process would be repeated
for designs that have more than two Reconfigurable Modules per RP, or more RPs. Close the current design:
close_project

GENERATE BITSTREAMS
▪ Run the pr_verify command from the TCL console. This is to verify compatibility of all configurations.

pr_verify Implement/Config_count_up/top_route_design.dcp

Implement/Config_count_down/top_route_design.dcp

▪ Read the first configuration into memory:

open_checkpoint Implement/Config_count_up/top_route_design.dcp

✓ Generate full and partial bitstreams for the first configuration (ensure you are in the right window with the design open):
write_bitstream -file Bitstreams/Config_Up.bit

 Two bitstreams are created:
Config_Up.bit: Power-up, full design bitstream

Config_Up_pblock_ga_partial.bit: Partial bit file for the count_rp module (first RM – counter up)
close_project

▪ Read the second configuration into memory:
open_checkpoint Implement/Config_count_down/top_route_design.dcp

✓ Generate full and partial bitstreams for the second configuration (locate in the right window with the design open):
write_bitstream -file Bitstreams/Config_Down.bit

 Two bitstreams are created:
Config_Down.bit: Power-up, full design bitstream

Config_Down_pblock_ga_partial.bit: Partial bit file for the count_rp module (second RM – counter down)
close_project

▪ Generate a full bitstream with a blackbox for the RP, plus blanking bitstreams for the RMs, these can be used to erase an
existing configuration to reduce power consumption:
open_checkpoint Checkpoint/static_route_design.dcp

update_design -cell ga -buffer_ports

place_design

route_design

write_checkpoint Checkpoint/Config_black_box.dcp

write_bitstream -file Bitstreams/config_black_box.bit

Two bitstreams are created:
Config_black_box.bit: Power-up, full design bitstream (with no logic in the RP)

Config_black_box_pblock_ga_partial.bit: Partial bit file for the count_rp module (RM – black box)
close_project

* The update_design command inserts constant drivers (GND) for all outputs so that they don’t float.

PARTIAL RECONFIGURATION OF THE FPGA

▪ From the main Vivado IDE (you might need to do close_project again), select Flow → Open Hardware Manager.

▪ Then Open a New hardware Target.

▪ Select Program Device and pick the XC7Z010 Device. Navigate to the /Bistreams folder to select Config_Up.bit. Program

the device. You will see the 2 LSBs are counting up while the 2 MSBs switch from 01 to 10 (make sure E=1).

Partial Reconfiguration
▪ Select Program Device. Navigate to the Bitstreams Folder to select Config_Down_pblock_ga_partial.bit. Program the

Device. The count on the 2 LSBs will change direction, while the 2 MSBs keep switching from 01 to 10 unaffected by Partial

reconfiguration (note the much shorter reconfiguration time).
▪ Select Program Device. Navigate to the Bitstreams Folder to select Config_black_box_pblock_ga_partial.bit. Program

the Device. The 2 LSBs will be blank, while the 2 MSBs keep switching from 01 to 10 unaffected by Partial reconfiguration

(note the much shorter reconfiguration time).

You can repeat this experiment over and over with new partial bitstreams.

IMPORTANT NOTE:
▪ The steps in this tutorial can be skipped by executing the design_complete.tcl script:

✓ Go to the Vivado TCL Shell, and type: source design_complete.tcl -notrace

▪ It will compile the entire design, from RTL to bitstreams (it will also generate more intermediate checkpoints and reports).
The script uses the constraint file top.xdc that merges top_io.xdc (I/O and clocking constraints) and pblocks.xdc (RP

constraints). Usually, we do not know RP constraints and thus we need to define them manually (as described in this tutorial)
✓ Note that the black box bitstream is not generated. You need to generate this manually.
✓ The available top.xdc file is associated with the ZYBO Board. For the ZYBO Z7-10, you must use your own top.xdc file.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

4 Daniel Llamocca

TEST PROJECT – 2 RPS
▪ LED pattern control: The circuit, written in VHDL, controls the pattern on the leds(3..0) signal.

✓ leds(3..2): The FSM switches between 10 and 01 if parameter PAT=”FIRST”, and between 11 and 00 if parameter

PAT=”SECOND”. The rate of change is controlled by my_genpulse that issues a one-cycle pulse every 𝑁 cycles.

✓ leds(1..0): It is controlled by a 2-bit updown counter whose rate of change is controlled by the my_genpulse circuit

that issues a one-cycle pulse every 𝑁 cycles (1 cycle = 8 ns in ZYBO Board).

▪ RECONFIGURABLE PARTITIONS (RPs): There are two dynamic regions:

✓ pattern_rp: This RP has two parameters: N, PAT. By combining their values, we can create a large set of variants (RMs).

pattern_rp.vhd: Wrapper file where we can modify the RP parameters in order to create different variants (RMs).

✓ counter_rp: This RP has two parameters: N, ud. By combining the parameters’ values, we can create a large set of

RMs. count_rp.vhd: wrapper file where we can modify the RP parameters in order to create different variants (RMs).

▪ We will modify (at run-time) the RPs by utilizing two variants for each one (the parameter N is set to 125 × 106 2⁄).

Reconfigurable Modules for pattern_rp partition Reconfigurable Modules for counter_rp partition

✓ PAT=”FIRST”: 01-10 pattern

✓ PAT=”SECOND”: 11-00 pattern

✓ DIR=UP: Counter up

✓ DIR=DOWN: Counter down

▪ Four Configurations:
✓ 01-10 Pattern and Counter up

✓ 01-10 Pattern and Counter down

✓ 11-00 Pattern and Counter up

✓ 11-00 Pattern and Counter down

SYNTHESIS
▪ Open the Vivado TCL Shell. Navigate to the /my_led2RP directory.

▪ Run the design.tcl script by entering: source design.tcl –notrace. This will Synthesize the design and create output

files in the /Synth folder. The ‘top’ design will be created with a blank circuit for the Reconfigurable Partitions.

ASSEMBLE THE DESIGN
▪ Open the Vivado IDE (start_gui). Go to the TCL console. You can now see the design structure in the Netlist pane.

▪ Load the design: open_checkpoint Synth/Static/top_synth.dcp

You can see the design structure in the Netlist pane, but blackboxes exist for the pattern_rp and count_rp partitions. The

instantiation names in the VHDL code is ga and gb.

▪ Load the synthesized checkpoints for first Reconfigurable Module (RM) for each Reconfigurable Partition (RP). In our case,
we will use pattern_first and count_up as our first RMs for each RP.
read_checkpoint -cell ga Synth/pattern_first/pattern_rp_synth.dcp

read_checkpoint -cell gb Synth/count_up/count_rp_synth.dcp

Note that pattern_rp and count_rp partitions have been filled in with logical resources.

▪ Define each RP as partially reconfigurable:
set_property HD.RECONFIGURABLE 1 [get_cells ga]

set_property HD.RECONFIGURABLE 1 [get_cells gb]

▪ Save the assembled design state for this initial configuration (where RP1 is pattern_first and RP2 is count_up)
write_checkpoint ./Checkpoint/top_link_first_up.dcp

BUILD THE DESIGN FLOORPLAN
Here, you create a floorplan to define the regions that will be partially reconfigured.

▪ Select the ga instance in the Netlist pane. Right click and select Floorplanning → Draw Pblock. Draw a rectangular box that

fits the resources occupied by the largest RM in that RP (instance name ga). Repeat this procedure for the gb instance.

▪ Run PR Design Rule Checks by selecting Report → Report DRC.

reset

clock

E

FSM

leds(3)

leds(2)

Qud

E

leds(1)

leds(0)z

N ud

my_genpulse

E

z

top

count_rp

E

pattern_rp

M15

M14

D18

G14

RECONFIGURABLE PARTITION 2

my2bit_udcount

N

my_genpulse

E z

PAT

RECONFIGURABLE PARTITION 1

R18

G15

L16 clk125

sw(0)

btn(0)

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

5 Daniel Llamocca

▪ Save these Pblock definitions and its associated properties on a .xdc file:
write_xdc ./Sources/xdc/fplan.xdc

IMPLEMENT THE FIRST CONFIGURATION (RP1: pattern_first, RP2: count_up)
▪ Load the top-level constraint file (to set device pinouts and top-level constraints): read_xdc Sources/xdc/top_io.xdc

▪ Optimize, place, and route the design. Notice the Partition Pins (interface points between static and dynamic regions)
opt_design

place_design

route_design

▪ Save the full design checkpoint and create report files:
write_checkpoint -force Implement/Config_pattern_first_count_up/top_route_design.dcp

report_utilization -file Implement/Config_pattern_first_count_up/top_utilization.rpt

report_timing_summary -file Implement/Config_pattern_first_count_up/top_timing_summary.rpt

At this point, you can use the static portion of this configuration for all subsequent configurations (variants of the circuit with
different RMs for each RP). We need to isolate the static design by removing the Reconfigurable Modules (RMs):
▪ Clear out Reconfigurable Module logic:

update_design -cell ga -black_box

update_design -cell gb -black_box

▪ Lock down all placement and routing. This is an important step to guarantee consistency for different RMs for each RP.
lock_design -level routing

▪ Write out the remaining static-only checkpoint (this checkpoint will be used for any future configurations).
write_checkpoint -force Checkpoint/static_route_design.dcp

IMPLEMENT THE SECOND CONFIGURATION (RP1: pattern_first, RP2: count_down)
▪ With the locked static design open, read in the post-synthesis checkpoints for the RMs that make up this Configuration:

read_checkpoint -cell ga Synth/pattern_first/pattern_rp_synth.dcp

read_checkpoint -cell gb Synth/count_down/count_rp_synth.dcp

▪ Optimize, place, and route the new RMs.
opt_design

place_design

route_design

▪ Save the full design checkpoint and report files:
write_checkpoint -force Implement/Config_pattern_first_count_down/top_route_design.dcp

report_utilization -file Implement/Config_pattern_first_count_down/top_utilization.rpt

report_timing_summary –file Implement/Config_pattern_first_count_down/top_timing_summary.rpt

IMPLEMENT THE THIRD CONFIGURATION (RP1: pattern_second, RP2: count_up)

▪ Clear out Reconfigurable Module logic:
update_design -cell ga -black_box

update_design -cell gb -black_box

▪ With the locked static design open, read in the post-synthesis checkpoints for the RMs that make up this Configuration:
read_checkpoint -cell ga Synth/pattern_second/pattern_rp_synth.dcp

read_checkpoint -cell gb Synth/count_up/count_rp_synth.dcp

▪ Optimize, place, and route the new RMs.
opt_design

place_design

route_design

▪ Save the full design checkpoint and report files:
write_checkpoint -force Implement/Config_pattern_second_count_up/top_route_design.dcp

report_utilization -file Implement/Config_pattern_second_count_up/top_utilization.rpt

report_timing_summary –file Implement/Config_pattern_second_count_up/top_timing_summary.rpt

IMPLEMENT THE FOURTH CONFIGURATION (RP1: pattern_second, RP2: count_down)
▪ Clear out Reconfigurable Module logic:

update_design -cell ga -black_box

update_design -cell gb -black_box

▪ With the locked static design open, read in the post-synthesis checkpoints for the RMs that make up this Configuration:
read_checkpoint -cell ga Synth/pattern_second/pattern_rp_synth.dcp

read_checkpoint -cell gb Synth/count_down/count_rp_synth.dcp

▪ Optimize, place, and route the new RMs.
opt_design

place_design

route_design

▪ Save the full design checkpoint and report files:
write_checkpoint -force Implement/Config_pattern_second_count_down/top_route_design.dcp

report_utilization -file Implement/Config_pattern_second_count_down/top_utilization.rpt

report_timing_summary –file Implement/Config_pattern_second_count_down/top_timing_summary.rpt

▪ At this point, you have implemented the static design and all Reconfigurable Module variants. Close the current design:
close_project

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: Embedded System Design for ZynqTM SoC RECRLAB@OU

6 Daniel Llamocca

GENERATE BITSTREAMS
▪ Run the pr_verify command from the TCL console. This is to verify compatibility of all configurations.

pr_verify –initial Implement/Config_pattern_first_count_up/top_route_design.dcp –additional

{Implement/Config_pattern_first_count_down/top_route_design.dcp

Implement/Config_pattern_second_count_up/top_route_design.dcp

Implement/Config_pattern_second_count_down/top_route_design.dcp}

▪ Read the first configuration into memory:

open_checkpoint Implement/Config_pattern_first_count_up/top_route_design.dcp

✓ Generate full and partial bitstreams for the first configuration
write_bitstream -file Bitstreams/Config_First_Up.bit

 Three bitstreams are created:
Config_First_Up.bit: Power-up, full design bitstream

Config_First_Up_pblock_ga_partial.bit: Partial bit file for the pattern_rp RP (pattern_first)

Config_First_Up_pblock_gb_partial.bit: Partial bit file for the count_rp RP (count_up)
close_project

▪ Read the second configuration into memory:

open_checkpoint Implement/Config_pattern_first_count_down/top_route_design.dcp

✓ Generate full and partial bitstreams for the second configuration
write_bitstream -file Bitstreams/Config_First_Down.bit

 Three bitstreams are created:
Config_First_Down.bit: Power-up, full design bitstream

Config_First_Down_pblock_ga_partial.bit: Partial bit file for the pattern_rp RP (pattern_first)

Config_First_Down_pblock_gb_partial.bit: Partial bit file for the count_rp module (count_down)
close_project

▪ Read the third configuration into memory:

open_checkpoint Implement/Config_pattern_second_count_up/top_route_design.dcp

✓ Generate full and partial bitstreams for the second configuration
write_bitstream -file Bitstreams/Config_Second_Up.bit

 Three bitstreams are created:
Config_Second_Up.bit: Power-up, full design bitstream

Config_Second_Up_pblock_ga_partial.bit: Partial bit file for the pattern_rp RP (pattern_second)

Config_Second_Up_pblock_gb_partial.bit: Partial bit file for the count_rp module (count_up)
close_project

▪ Read the fourth configuration into memory:

open_checkpoint Implement/Config_pattern_second_count_down/top_route_design.dcp

✓ Generate full and partial bitstreams for the second configuration
write_bitstream -file Bitstreams/Config_Second_Down.bit

 Three bitstreams are created:
Config_Second_Down.bit: Power-up, full design bitstream

Config_Second_Down_pblock_ga_partial.bit: Partial bit file for the pattern_rp RP (pattern_second)

Config_Second_Down_pblock_gb_partial.bit: Partial bit file for the count_rp module (count_down)
close_project

▪ Generate a full bitstream with a blackbox for the RPs, plus blanking bitstreams for the RMs, these can be used to erase an
existing configuration to reduce power consumption:
open_checkpoint Checkpoint/static_route_design.dcp

update_design -cell ga -buffer_ports

update_design -cell gb -buffer_ports

place_design

route_design

write_checkpoint Checkpoint/Config_black_box.dcp

write_bitstream -file Bitstreams/config_black_box.bit

Three bitstreams are created:
Config_black_box.bit: Power-up, full design bitstream (with no logic in the RPs)

Config_black_box_pblock_ga_partial.bit: Partial bit file for the pattern_rp RP (black box)

Config_black_box_pblock_gb_partial.bit: Partial bit file for the count_rp module (black box)
close_project

* The update_design command inserts constant drivers (GND) for all outputs so that they don’t float.

IMPORTANT NOTE:
▪ The steps in this tutorial can be skipped by executing the design_complete.tcl script:

✓ Go to the Vivado TCL Shell, and type: source design_complete.tcl -notrace

